La EPA propone la prohibición de todos los usos comerciales, industriales y de consumo del cloruro de metileno para proteger la salud pública
Mar 06, 2023Duluth puede buscar dejar de lado la sal para carreteras
Mar 08, 2023Teacher Retirement System of Texas recorta posición accionaria en Olin Co. (NYSE:OLN)
Mar 10, 2023ReCode, Vertex y 4DMT buscan ayudar a los pacientes con fibrosis quística no tratados
Mar 12, 2023Nuevo sistema innovador puede convertir el agua de mar en combustible
Mar 14, 2023Cómo un microbio crea su propia maquinaria de reducción de sulfato
5 de junio de 2023
Este artículo ha sido revisado de acuerdo con el proceso editorial y las políticas de Science X. Los editores han destacado los siguientes atributos al tiempo que garantizan la credibilidad del contenido:
comprobado
publicación revisada por pares
fuente confiable
corregir
por Sociedad Max Planck
Científicos del Instituto Max Planck de Microbiología Marina en Bremen, Alemania, han descubierto los secretos moleculares de un microbio generador de metano que puede transformar el sulfato en sulfuro, un bloque de construcción celular listo para usar. Este descubrimiento abre interesantes oportunidades en la producción de biocombustibles.
El azufre es un elemento fundamental para la vida y todos los organismos lo necesitan para sintetizar materiales celulares. Los autótrofos, como las plantas y las algas, adquieren azufre al convertir el sulfato en sulfuro, que se puede incorporar a la biomasa. Sin embargo, este proceso requiere mucha energía y produce productos intermedios y subproductos nocivos que deben transformarse de inmediato.
Como resultado, anteriormente se creía que los microbios conocidos como metanógenos, que generalmente tienen poca energía, no podrían convertir el sulfato en sulfuro. Por lo tanto, se asumió que estos microbios, que producen la mitad del metano del mundo, dependen de otras formas de azufre, como el sulfuro.
Este dogma se rompió en 1986 con el descubrimiento del metanógeno, Methanothermococcus thermolithotrophicus, que crece sobre sulfato como única fuente de azufre. ¿Cómo es esto posible, considerando los costos energéticos y los intermediarios tóxicos? ¿Por qué es el único metanógeno que parece ser capaz de crecer en esta especie de azufre? ¿Este organismo utiliza trucos químicos o una estrategia aún desconocida para permitir la asimilación de sulfato? Marion Jespersen y Tristan Wagner del Instituto Max Planck de Microbiología Marina ahora han encontrado respuestas a estas preguntas y las han publicado en la revista Nature Microbiology.
El primer desafío al que se enfrentaron los investigadores fue lograr que el microbio creciera en la nueva fuente de azufre. "Cuando comencé mi doctorado, realmente tuve que convencer a M. thermolithotrophicus para que comiera sulfato en lugar de sulfuro", dice Marion Jespersen. "Pero después de optimizar el medio, Methanothermococcus se convirtió en un profesional para crecer en sulfato, con densidades de células comparables a las que crecen en sulfuro".
"Las cosas se pusieron realmente emocionantes cuando medimos la desaparición del sulfato a medida que crecía el organismo. Fue entonces cuando realmente pudimos demostrar que el metanógeno convierte este sustrato". Esto permitió a los investigadores cultivar M. thermolithotrophicus de forma segura en biorreactores a gran escala, ya que ya no dependían del gas de sulfuro de hidrógeno tóxico y explosivo para su crecimiento. "Nos proporcionó suficiente biomasa para estudiar este fascinante organismo", explica Jespersen. Ahora los investigadores estaban listos para profundizar en los detalles de los procesos subyacentes.
Para comprender los mecanismos moleculares de la asimilación del sulfato, los científicos analizaron el genoma de M. thermolithotrophicus. Encontraron cinco genes que tenían el potencial de codificar enzimas asociadas a la reducción de sulfato. "Logramos caracterizar cada una de esas enzimas y, por lo tanto, exploramos la vía completa. Un verdadero tour de force cuando se piensa en su complejidad", dice Tristan Wagner, director del Metabolismo Microbiano del Grupo de Investigación de Max Planck.
Al caracterizar las enzimas una por una, los científicos ensamblaron la primera vía de asimilación de sulfato a partir de un metanógeno. Si bien las dos primeras enzimas de la vía son bien conocidas y ocurren en muchos microbios y plantas, las siguientes enzimas eran de un tipo nuevo. "Nos sorprendió ver que parece que M. thermolithotrophicus ha secuestrado una enzima de un organismo disimilatorio reductor de sulfato y la ha modificado ligeramente para satisfacer sus propias necesidades", dice Jespersen.
Mientras que algunos microbios asimilan el sulfato como un bloque de construcción celular, otros lo usan para obtener energía en un proceso de disimilación, como lo hacen los humanos cuando respiran oxígeno. Los microbios que realizan la reducción de sulfato disimilatoria emplean un conjunto diferente de enzimas para hacerlo. El metanógeno estudiado aquí convirtió una de estas enzimas disimilatorias en una asimilatoria. "Una estrategia simple, pero altamente efectiva, y muy probablemente la razón por la cual este metanógeno puede crecer en sulfato. Hasta ahora, esta enzima en particular solo se ha encontrado en M. thermolithotrophicus y en ningún otro metanógeno", explica Jespersen.
Sin embargo, M. thermolithotrophicus también necesita hacer frente a dos venenos que se generan durante la asimilación del sulfato. Para eso están hechas las últimas dos enzimas de la vía: la primera, nuevamente similar a una enzima disimilatoria, genera sulfuro a partir de sulfito. El segundo es un nuevo tipo de fosfatasa con gran eficacia para hidrolizar el otro veneno, conocido en breve como PAP.
"Parece que M. thermolithotrophicus recopiló información genética de su entorno microbiano que le permitió crecer en sulfato. Al mezclar y combinar enzimas asimiladoras y disimilatorias, creó su propia maquinaria funcional de reducción de sulfato", dice Wagner.
Los metanógenos hidrogenotróficos, como M. thermolithotrophicus, tienen la asombrosa capacidad de convertir dihidrógeno (H2, por ejemplo, producido artificialmente a partir de energía renovable) y dióxido de carbono (CO2) en metano (CH4). En otras palabras, pueden convertir el gas de efecto invernadero CO2 en el biocombustible CH4, que se puede utilizar, por ejemplo, para calentar nuestros hogares.
Para hacer esto, los metanógenos se cultivan en grandes biorreactores. Un cuello de botella actual en el cultivo de metanógenos es su necesidad de gas de sulfuro de hidrógeno altamente peligroso y explosivo como fuente de azufre. Con el descubrimiento de la ruta de asimilación de sulfato en M. thermolithotrophicus, es posible modificar genéticamente los metanógenos que ya se usan en biotecnología para usar esta ruta en su lugar, lo que lleva a una producción de biogás más segura y rentable.
“Una cuestión candente sin resolver es por qué M. thermolithotrophicus asimilaría el sulfato en la naturaleza. Para ello, tendremos que salir al campo y ver si las enzimas necesarias para esta vía también se expresan en el entorno natural del microbio”, concluye. Wagner.
Más información: Reducción asimilatoria de sulfato en el metanógeno marino Methanothermococcus thermolithotrophicus, Nature Microbiology (2023). DOI: 10.1038/s41564-023-01398-8
Información del diario:Microbiología de la naturaleza
Proporcionado por la Sociedad Max Planck
Más información: Información de la revista: Cita